Consistency and Freeness

Pulp Consistency

- Definition
- Ranges
- On-line measurement
- Control principles
- Reference: "Accurate Consistency: a handbook on accurate consistency"

• Consistency is the percent of oven dry mass in the pulp

Consistency = $\frac{\text{Dry weight of sample}}{\text{Total weight of sample}}$ 100%

- Accurate consistency control vital to uniform quality and production
- Consistency affects the efficiency and productivity all most all unit operations
 - Many have narrow operation range, eg screens plug at too high consistency
 - Many have narrow range of efficient operation, eg, cleaners are not effective above 1.5% consistency.

Consistency ranges

12-40%	High Consistency	Mechanical pulping, reject refining, bleaching, storage
5-12%	Medium Consistency	Cooking, bleaching, storage, repulping
1-5%	Low Consistency	Stock prep, cleaning, screening, beating blending
0.1-1.0%	Very Low Consistency	Headbox, whitewater flotation deinking
0.01-0.1%	Ultra Low Cnsistency	Clarifier, clear white water

Consistency Measurement

- Shear Force
 - Most widely used in the industry
 - Blade (passive)
 - A blade is placed in the pulp flow.
 - Force on the blade is dependent on network strength and fluid velocity
 - Rotating (active)
 - More accurate and expensive
 - Effective fluid velocity is more controlled

Blade consistency transmitters

- Practical consistency range 0.8 to 16%, velocity range 0.3 to 1.4 m/s
- Different consistencies give different drag relations
- Network strength dependent on
 - Pulp type
 - Fibre length, filler and fines content.
 - Pulp processing, refinign ...
 - Chemical addition, ph

Rotating consistency transmitters

- Very common, more reliable and expensive
- Consistency range > 0.8%, velocity range 0.1 to 1.4 m/s
- Rotor speed is large with respect to flow velocity therefore approximately independent of flow
- Dependent on factors affecting network strength

- Optical
 - Light scattering / absorption (1980's)
 - Transmission or reflection types
 - Hope to get accurate low consistency measurements. Not very accurate or reliable.
 - Dependent on total surface of fibres
 - Varies with refining, fines content, filler etc.

- Nuclear, gamma gauge
 - Detect density of fluid
 - In theory it is possible to calculate consistency from the density difference between water and cellulose fibres.
 - Cellulose is approx 1.5 g/ml
 - Very sensitive to high Z (Nuclear mass) material. Fillers i.e. clay, CaCO3, TiO
 - Black liquor content

- Microwave
 - Measures wave speed through fluid
 - Calculate the dielectric constant .. Get water content.
 - Range 1% to 25%
 - Depends on
 - Air content in water
 - Conductivity, liquor and bleaching carryover
 - Poorly mixed pulp
 - Deposits on sensor

- Pressure drop across a length of pipe
- Ultrasound
- Video imaging ...
- For greater 30% consistency
 - NIR
 - Dielectric measurement of water
 - No really good method to measure these high consistencies

Laboratory Measurements

- Oven dry for
- Sampling: Difficult to get representative sample
 - Varies with time so you need a sampling time long enough to get average
 - Varies spatially in flow
 - Plug in the centre of the pipe, water annulus at wall, therefore an artificially low sample consistency if tapped off the wall
 - Need to ensure a proper sampling tap placement.
 - Dewaters easily at valve. Need ball valve or special consistency valve

Consistency control

Blow tank consistency control

Staged consistency control

Consistency

Canadian Standard Freeness

- Ability of water to drain through the pulp
- Measured as volume of water draining through side-orifice (units of mL)
- Function of surface area, coarseness, fibrillation, flexiblity, fines content, others ...

