Introduction

- Pulp screens are essential for contaminant removal and fractionation
- Cylinder and rotor are the key performance components
What we cover today

- Develop a mathematical model of a single screen
- Calculate the volumetric, mass and contaminant flow through a screening system and a system of screens
- Power consumption of a screen rotor
- Development of a novel foil rotor

Objectives of Pulp Screening

- Contaminant removal
- Fibre fractionation
- Deflocculation
- Protection
Contaminants

- Shives are unpulped pieces of wood
- Most common contaminant
- Weaken paper, leads to machine breaks
- Source of visible dirt
- Rougher surface
- Returned to digester or sent to reject refiner

Contaminants

- Sclereids are inner bark cell clusters
 - dense highly lignified
 - show up as windows in calendered sheets
- Strings
 - fibre bundles produced in the process
 - similar problems as shives
Contaminants

- Plastic
 - cause streaks and cuts during coating
 - typical polyethylene, SG < 1.0

- Fibre fractionation
 - remove coarse and long fibres for further treatment

TMP Screening and Cleaning System
Pressure Screen Equipment

Parts of a Pressure Screen

- Pulp and contaminants enter through feed port
- Fibres pass through screen plate, shives retained by screen plate
- Rotor produces pressure pulses to back flushes the apertures
- Clean pulp exits through accept
- Contaminants exit via reject port
- Dilution counters reject thickening
- Rock trap
Cylinder Types

- **Holed cylinders**
 - 1.0-2.5 mm diameter holes
 - 15-25% open area
 - probability screens
 - durable, 20 year old technology

- **Slotted cylinders**
 - 0.1 mm to 0.5 mm wide slots
 - 3-5% open area
 - barrier/probability screens
 - always contoured
 - **Milled**
 - Can’t make below 0.2 mm wide
 - **Wedge wire** (Welded wires)
 - **MacroFlow** (constructed)

Slotted Screen Plate Manufacturing

- **Wire cylinders**
 - Continuous slots increase open area
 - Higher capacity (shape and open area)
 - Most expensive
 - Early plates were weaker construction, susceptible to fatigue failure and had questionable tolerance … no longer true.
Screen Plate Contours

- Contours
 - protrusion on feed side of cylinder
 - increase turbulence
 - redirect flow into aperture
 - increased barrier screening
 - reduced probability of screening fractionation and reject thickening

Wire shapes

AFT has a range of Profile™ selections to suit a range of conditions.

Deeper contours tend to provide better capacities and reduced thickening - but at the expense of efficiency.
Contoured Screen Surface

- CFD simulation of flow over surface
- Contour height
 - Decreases Thickening
 - Decreases Efficiency
 - Increases Capacity

Slot tolerance

Slot tolerance is critical to contaminant removal and screen capacity.
Slot tolerance specifications:
90% of slots are within ± 0.001" of average width
100% of slots are within ± 0.002" of average width
Average of slot widths are within ± 0.0008" of the nominal slot width.

Rotors

- Produce pressure pulses to backflush pulp accumulations from the screen plate apertures
- Induces high tangential fluid velocity at screen surface
- Can be foils or bumps … many types available…
Suction / cleansing action of rotor

What controls the passage of fibres through the screen plate?
Barrier Screening

Probability Screening
Turning Effect

Mathematical Analysis of Screens and Screening Systems
Pressure Screen Analysis

- Develop a mathematical description of screens and screening systems
- Allows us to engineer the process
- How?
 - Quantify probability of passage by a Passage ratio
 - Derive performance equation for consistency, contaminant efficiency and fractionation in terms of passage ratio and volumetric reject ratio
 - Derive equation for passage ratio in terms of fibre length, slot velocity and slot width
 - Calculate efficiency of screening system
- Introduce fractionation simulation and optimization as a pulp processing design tool

Definitions for a single screen

- Volumetric reject ratio
 \[R_v = \frac{Q_{\text{reject}}}{Q_{\text{feed}}} \]
- Mass reject ratio
 \[R_m = \frac{C_{\text{reject}} Q_{\text{reject}}}{(C_{\text{feed}} Q_{\text{feed}})} \]
- Reject thickening factor
 \[T = \frac{C_{\text{reject}}}{C_{\text{feed}}} \]
- Shive removal efficiency
 \[E_s = \frac{S_{\text{reject}} Q_{\text{reject}}}{(S_{\text{feed}} Q_{\text{feed}})} \]
- Long fibre removal efficiency

Q: Volumetric flow rate
C: Consistency
S: Concentration of shives
Passage Ratio

- Quantifies the ability of fibres to pass through a single screen aperture

\[P = \frac{C_S}{C_U} \]

Flow Model in Screening zone

- Assume:
 - passage ratio constant
 - no axial mixing (plug flow)
 - perfect radial mixing

\[QC = CP_p \, dQ + (Q-dQ)(C-dC) \]
$T = R_v^{p-1}$
Efficiency of a single screen

Efficiency: Barrier and Probability

[Graphs showing efficiency as a function of mass reject ratio for different barrier probabilities]
What factors affect passage ratio?

- Aperture type (holes or slots)
- Size of aperture
- Fibre length / contaminant size
- Fluid velocity through aperture
- Rotor tip velocity
- Contour type
- Rotor type
- ?

Which ones are the most important?

- Fibre length, L
- Slot width, W
- Aperture Velocity, \(V_s \)
- Rotor speed, \(V_t \)
- Dimensional analysis might suggest that
Penetration number analysis:
System efficiency - Analysis
System efficiency - Analysis

Power requirements

- How much power is required?
- What are the key variables?
Dimensional analysis

- Power Coefficient,
 \[C_p = \frac{P}{\rho \omega^3 D^5} = \frac{P}{\rho V_r^3 D^5} \]
- Reynolds Number,
 \[Re = \frac{\rho \omega D^3}{\mu_a} = \frac{\rho V_r D}{\mu_a} \]
- Capacity coefficient,
 \[C_q = \frac{Q_r}{\omega D^2} = \frac{Q_r}{V_r D^2} \]
- Reject Ratio, \(R_v = \frac{Q_r}{Q_f} \)

\[\frac{P}{\rho v_t^3 D^2} = fn(Re, C_q, R_v) \]

Experimental results

- 3 different screen sizes
- Dimensional form

![Graph showing power vs. tip speed for three different screen sizes]
Experimental results

- Non Dimensional

Effect of element geometry

[Diagram showing different element geometries and their corresponding power output against tip speed]
Effect of element geometry (non Dim)

Effect of Feed Flow Rate
Power conclusions

1. \(P \propto \rho V_t^3 D^2 \)
2. \(P \propto Q_f \)
 - Depends on element shape
3. Little dependence on \(R_v \)
Computational Fluid Dynamics

- The foil shape was designed using Computational Fluid Dynamics (CFD)
- Divide domain into fine grid
- Solve fundamental equations for pressure, velocity and turbulence
- Obtain theoretical calculations for flow and pressure on the cylinder
- Examine large number of design variables (shape, angle, etc.)

High Performance Rotor Design

- Rotors generate pulsations to clear screen cylinder apertures
- Optimal pulsations ensure high efficiency, capacity and runnability
- There are more than 200 screens in the province
- 200 HP motors
- Consumes ~ 180 GW h / yr
CFD Results

- Optimal pulse for 5 Deg angle of attack:
 - Strong negative pulse
 - No positive pulse

\[C_p = \frac{P}{\frac{1}{2} \rho V_t^2} \]
Prototype Pilot Trials

- Experimental conditions:
 - Ahlstrom F1 Screen
 - Cylinder: 0.1mm MF1232
 - Rotors:
 - Prototype EP (60 mm Foil)
 - Prototype EP (130 mm Foil)
 - Gladiator HC (GHC – Solid core)
 - Andritz VF
 - De-ink market pulp
 - 1.4% consistency

Pilot Trial Results
Pilot Trial Results

Current BC Mill Trials

- BC Hydro / Canfor / AFT demonstration project to conduct 2 mill trials
 - Northwood: softwood kraft mill
 - GHC solid core rotor
 - Replace conventional “Stingray” rotor
 - TMP mill:
 - EP foil rotor
 - Jan. 2006
Canfor-Northwood SW Kraft Trial

Graph 1:
- **Tip Speed (m/s)** range: 18 to 30
- **Power (kW)** range: 0 to 140
- **52% Energy Savings**

Graph 2:
- **Slot Velocity (m/s)** range: 2.0 to 3.4
- **Debris Removal Efficiency (%)** range: 50 to 100
- GHC (24 m/s) and Stingray (29 m/s) performance comparison
Conclusions

- Two new low energy rotors have been developed
- Performance has been demonstrated in computational, laboratory, pilot and mill trials
- GHC - Solid core
 - 52% energy savings
 - Maintained high efficiency and runnability
- EP – Foil rotor
 - Potential for 80% energy savings
 - Increased efficiency and runnability

The end