Kraft Pulping

Standard terms

Total chemical: All Na salts

Active alkali: NaOH + Na₂S

Effective alkali: NaOH + 1/2 Na₂S

Sulphidity: Na₂S/(NaOH + Na₂S)

Total alkali: NaOH + Na₂S + Na₂CO₃ + Na₂SO₄

Total titratable alkali: NaOH + Na₂S + Na₂CO₃

(Usually expressed in equivalents of Na₂O) in North America as lb/ft³ or g/L as Na₂O International as g/L as Na₂O or NaOH

Chemical composition for bleachable pulp grades

	White Liquor (g/L as Na₂O)	Black Liquor (g/L as Na₂O)
NaOH	65 – 75	10 – 15
Na ₂ S	25 - 35	6 – 10
Na ₂ CO ₃	10 – 15	
Na ₂ SO ₄	<2	
Active Alkali	~100	13 – 20
Effective Alkali	~85	11 - 17

Kraft Chemical Charges

Pulp Grade	Active Alkali (% on od wood)	Sulfidity (%)	Liquor/Wood (vol/wt)
SW Bleachable	16 – 18	30	4:1
HW Bleachable	14 – 16	25	3:1
SW Liner	12 – 13	25	4:1

Hydrolysis of sodium sulfide

$$Na_2S + H_2O \implies NaOH + NaHS$$

$$NaHS + H_2O \Rightarrow NaOH + H_2S$$

(The second reaction is not significant at the pH levels of kraft liquors)

Sequence of Events in kraft pulping

- Provide a pathway for liquor penetration into the wood matrix
- Diffusion of HS⁻ and OH⁻ ions throughout the fibre matrix
- Reactions with the wood components
- Diffusion of reaction products to the chip surface
- Dispersion of reaction products in the black liquor

Carbohydrate reactions

- · Alkaline swelling of the fibre wall
- · Alkaline dissolution of carbohydrates
- Precipitation of dissolved carbohydrates onto fibres
- Alkaline hydrolysis of acetyl groups
- Alkaline "peeling" of cellulose
- · Stopping reactions
- Alkaline hydrolysis of β-glycosidic bonds

Polysaccharide degradation reactions (purified cellulose in NaOH solution)

	E _A , kJ/mol	4321
Peeling	~ 100	G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-
Stabilization	~ 134	G _n -G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G
Hydrolysis	~ 150	G _n -G-G-G}G-G-G-G-G-G

Reaction Kinetics

$$-\frac{dL}{dt} = k[L]^a [OH^-]^b [HS^-]^c$$

L = lignin content (% on o.d. wood)

a,b,c = reaction order constants

t = time (hours)

k = reaction constant f(T, wood species, etc.)

Relative rate of reaction

$$k = Ae^{-E_a/RT}$$

= rate constant

= pre exponential factor

 E_a = activation energy R = ideal gas constant

= temperature (°K)

$$rel. \ rate = \frac{k_T}{k_{373}} = \exp\left(-\frac{E_a}{R}\left(\frac{1}{T} - \frac{1}{373}\right)\right)$$

Pulping kinetics

H-Factor

$$H = \int\limits_0^t \frac{k_T}{k_{373}} dt$$

for E_a = 32 kcal/mole R = 1.986 cal/(mole·K)

$$H = \int_{0}^{t} \left(e^{\frac{43.20 - \frac{16113}{T(t)}}{t}} \right) dt$$

• Delignification rate

$$-\frac{dL}{dt} = k[L]^{1}[OH^{-}]^{b}[HS-]^{c}$$

for $[OH^-]$ and $[HS^-] \cong constant$ during bulk delignification

$$\ln \frac{L_o}{L} = k_{373} [OH^-]^b [HS^-]^c \int_0^t \frac{k(t)}{k_{373}} dt = K \cdot H$$

where $K \cong \text{constant}$

Variables in kraft pulping				
Process Variables	Wood Variables			
Alkali applied Cooking temperature Time-to-temperature Time-at-temperature Liquor-to-wood ratio Liquor sulfidity	Species Tree component Quality Chip quality			

Effect of species on yield					
	CHEMIC	AL COMPOSIT	ION, %	PULP YIELD, %	
	Cellulose	Hemicellulose	Lignin		
White Spruce	44	29	27	48 \	
Jack Pine	41	30	29	46 \Kappa 30	
Balsam Fir	44	27	29	45/	
White Birch	41	40	19	51 🔪	
Maple	41	35	24	49 > Kappa 15	
Aspen	53	31	16	56	

Pulp Washing

- Washing removes 'black liquor' from pulp
- Black liquor goes to recovery
- Pulp goes to screening and bleaching

Recovery

Purposes of Chemical Recovery

- Regeneration of alkali: it regenerates the sodium hydroxide consumed in the cook
- Chemical conversion: it converts all sulphur compounds in black liquor into Na₂S
- Elimination of pollution: destruction of organic matter dissolved in liquor during pulping stage
- Heat generation: nearly all the heat requirements for the pulping operation are produced

Main Chemical Reactions in Recovery Process

1. Reduction in recovery furnace

$$Na_2SO_4 + 2C \rightarrow Na_2S + 2CO_2$$

- 2. Causticizing $Na_2CO_3 + CaO + H_2O \rightarrow 2NaOH + CaCO_3$
- 3. Calcining

$$CaCO_3 \rightarrow CaO + CO_2$$

Black Liquor Properties Which Have Strong Effects on Recovery

- 1. Concentration of black liquor
- 2. Liquor viscosity \rightarrow sprayability, evaporation capacity
- 3. Organic-inorganic ratio of black liquor solids
- Heating value of liquor → composition of organics,
 O/I ratio, liquor oxidation, dead load of inorganics,
 soap content

Heat Transfer in Evaporators

Evaporators are heat transfer devices with a heat supply and heat sink

- Heat supply: latent heat of steam and condensate flash
- Heat usage: sensible heat (to bring liquor to boiling) & latent heat (to evaporate water)

Steam economy ~ evaporation efficiency = kg of water evaporated per kg of steam used (4.5 - 6.0 kg/kg in the multiple effect evaporators)

Several different types of evaporator technologies can / have been used.

Multiple Effect Evaporators

- Steam is fed to only one evaporator body
- The steam condensate, and vapour from liquor evaporation in that body, are "flashed" to a second evaporator operating at lower pressure
- Water evaporated in effect n is used for heating effect n+1
- Liquor and steam flow are countercurrent
- The multiple effect principle results in very high steam economy and low evaporation costs

diagram of a double-effect falling film evaporator. Condensing vapors from flash tank B1 heat evaporator A2. 1=feed, 2=product, 3=steam,

http://en.wikipedia.org/wiki/Multiple-effect_evaporator

Disadvantages

- Heat transferred in each effect is roughly equal. If U in effect # 1 drops by 50 % (due to scaling), the evaporation capacity of a six effect system is reduced by 17 %
- Foaming and liquor entrainment in the vapour stream lead to steam side fouling and corrosion
- Stripping of sulphur gases from the liquor can result in non-condensable gas blanketing, which effectively reduces the area available for heat transfer

Black Liquor Oxidation

- Essential for odor reduction prior to recovery furnace
- Two types of systems:
 - Weak black liquor (15-20% solids)
 - Strong black liquor (40-50 solids)
- Foam from the soaps/fats from the tree is a major problem .. Need de-foaming systems
- Purpose to oxidize residual Na2S to Sodium Thiosulfate
- First stage can be on WBL or SBL. Second stage should be before direct contact evaporators.

Black Liquor Oxidation

$$2Na_2S + 2O_2 + H_2O \rightarrow Na_2S_2O_3 + 2NaOH$$
 sodium thiosulphate

$$4CH_3SH + O_2$$
 $\rightarrow 2(CH_3)_2S_2 + 2H_2O$
methyl dimethyl disulphide

Both Na2S and CH3SH are the largest contributors to TRS (Total Reduced Sulphur) emission non-compliance

Recovery Boiler

- The recovery boiler process has several unit processes:
 - Combustion of organic material in black liquor to generate steam
 - Send to turbine for energy production
 - Reduction of inorganic sulfur compounds to sodium sulfide, which exits at the bottom as smelt
 - Production of molten inorganic flow of mainly sodium carbonate and sodium sulfide, which is later recycled to the digester after being re-dissolved
 - Recovery of inorganic dust from flue gas to save chemicals (sulphor and sodium)
 - Production of sodium fume to capture combustion residue of released sulfur compounds

CMPC Celulosa Santa Fe Recovery boiler is one of the

Howe Sound Pulp and Paper Recovery boiler

http://en.wikipedia.org/wiki/Recovery_boiler

Corrosion in Recovery Furnace

- Floor tube cracking and hydroxide attack around air ports are problems in boilers with composite tubes
- Reactions between H₂S and CH₃SH and iron in carbon steel can cause rapid corrosion of water wall tubes
- Corrosion close to the surface of the mud drum is problematic in boilers with two drums
- Acidic corrosion, below the dew point of gases, can reduce the electrostatic precipitator efficiency and lifetime

Objectives of Recausticizing

- Regenerate NaOH
- Produce enough white liquor for cooking (and other needs)
- Produce a high quality liquor at minimal cost

Definitions

Causticity =
$$\frac{\text{NaOH}}{\text{NaOH + Na}_2\text{CO}_3} \times 100$$

Causticizing =
$$\frac{\text{NaOH}_{\text{wl}} - \text{NaOH}_{\text{gl}}}{(\text{NaOH}_{\text{wl}} - \text{NaOH}_{\text{gl}}) + \text{Na}_2\text{CO}_3} \times 100$$
efficiency

Total titratable alkali = TTA = NaOH + Na_2S + Na_2CO_3

Recausticization Reactions

$$CaCO_3 \xrightarrow{heat} CaO + CO_2$$

 $CaO + H_2O \longrightarrow Ca(OH)_2$
 $Ca(OH)_2 + Na_2CO_3 \longrightarrow 2NaOH + CaCO_3$

Chemical Pulp Bleaching I Overview

- Objectives and goals
- Bleaching chemistries used
 - Reactions with lignin and cellulose
 - Typical bleaching conditions
 - Bleaching kinetics
- The bleaching stage
- Delignification partial sequences
- Brightening partial sequences

Why Pulps can be Bleached

- Cellulose is almost colourless
- Lignin can be removed or modified to absorb less light

Objectives of Pulp Bleaching

"To produce a strong, bright and clean pulp in an environmentally friendly manner at minimum cost."

Objectives of Pulp Bleaching

- Removal of the majority of lignin in the delignification stages: attain target kappa number
- Obtain target brightness levels in the brightening stages
- Preserve carbohydrates to maintain pulp yield and strength
- Treat the pulp uniformly
- Minimize all costs

What Happens During Bleaching?

- Pulp is made whiter and brighter
- Lignin, resins, metal ions, etc. are removed
- Pulp and fibre properties are altered (e.g. viscosity)
- Pulp is made suitable for its end use

Factors Affecting the Choice of the Bleaching Process Used

- Pulping process (kraft, soda or sulfite)
- Wood species
- End use of pulp
- Minimum colour reversion
- Environmental constraints
- Cost

Delignification and Brightening

- Pulp bleaching is accomplished in two stages: delignification and brightening
- Delignification removes the residual lignin (3 -7%) that remains after cooking.
- Brightening is accomplished in a series of oxidation stages (one to four)
- Brightness ceiling typically 90%+ ISO

Control Targets in Bleaching

Lignin Content Kappa Number

% lignin = $0.15 \times \text{kappa}$

Brightness ISO Brightness

457nm light reflected from sheet under controlled

conditions

Bleaching Chemicals

Stage	Chemical Name	Symbol
С	Chlorine	Cl ₂
D	Chlorine Dioxide	CIO ₂
Ε	Sodium Hydroxide	NaOH
Н	Sodium Hypochlorite	NaOCI
Р	Hydrogen Peroxide	H_2O_2
0	Oxygen	O_2
Z	Ozone	O_3

B	leaching	Variab	les
	Cacillis	Variab	103

Variable	Expressed as:	Effect	
Chemical		chemical reactions	
Pulp consistency	$C_m = \frac{mass of fibre}{total suspension mass}$	chemical concentrationreaction ratesuspension rheology	
Charge	wt/wt, %	treatment extent of reaction	
Temperature	°C	reaction rate	
Time	s/min/hr	• duration of reaction	
pH	рН	• chemistry • reaction rate	

Brightness Development Across the Bleach Plant

Delignification and brightness development

Ozone Delignification

- Ozone is a powerful oxidizing agent which reacts readily with most organic materials
- First patent describing the use of ozone in bleaching of fibres for papermaking issued in 1889
- Commercial implementation delayed due to technical issues (mixing, ozone generation), higher pulp production costs, and poorer pulp quality (lower strength, lower brightness)
- 13 installations by 1995
- Future D/Z?

Chemical Pulp Bleaching II Overview

- Bleaching sequences
- D(EOP)D(EP)D sequence
- Bleaching equipment
 - washers
 - mixers
 - residence towers
- Challenges met in the 90's
- Challenges for the future 2000 and beyond

Bleaching Sequences

• Delignification Partial Sequences

> CE C_DE (DC)E

C(EO) O(CE) ODE

OD(EO)

• Brightening Partial Sequences

> Н D HD **HDED** DED D(EP)D

Bleaching Sequences

1970's CEH

CEHH

CEDED

C_DEDED (5-10% D)

 $(C_{30}D_{70})(E+O)DED$

 $O(D_{70}, C_{25}D_5)(E+O)D$

1990's OD(EOP)D(EP)D

OZEP

Future ?

Typical Bleaching Conditions OD(EOP)D(EP)D						
	0	D	EOP	D	EP	D
Chemical Applied, kg/t						
O_2	25	-	5	-	-	-
CIO ₂	-	20	-	8	-	5
NaOH	25	-	25	5	5	-
H_2O_2	-	-	3	-	~3	-
Temperature, °C	95	50	70	70	70	70
Residence time, min	60	30	60	180	60	180
Residual Oxidant	yes	nil	-	tr	-	nil
Consistency, %	12	3	12	12	12	12
End pH	11+	2.5	10.5	3.5	10.5	4
kappa target	15	-	~3	-	-	-
Brightness target (ISO)	-	-	-	83	-	90

Bleaching Equipment

- Pumps
- Mixers
- Reactors (Residence Towers)
- Washers
- Sensors

Typical Tower Design

Stage	Consistency	Residence	Tower	Tower Aspect
	(%)	Time (h)	Configuration	Ratio (H/D)
0	10 - 12	0.75 - 1.0	UF	7 - 10
	28 - 32	0.5	DF	3 - 4
C, (CD), D ₁₀₀	3 - 4	0.5 - 1.0	UF	4 - 7
	10 - 12	0.5	UF	4 - 7
Z	10 - 12	0.05 - 0.08	UF	10 - 12
E _o , E _{op} (tube)	10 - 12	0.05 - 0.5	UF+	9.5
E		1.0 - 2.0	DF	4 - 5
E _{op}		~2.0	UF	4 - 5
Н	10 - 12	0.5 - 3.5	DF	4 - 5
D	10 - 12	0.5	UF+	9
		2.5 - 4.5	DF	5
		3.0 - 5.0	UF	5

Tower Design - In General

- Tower Configuration
- Low and Medium Consistency (3 12%)
 - Liquid chemicals: upflow or downflow
 - Liquid chemicals with high vapor pressure: upflow (tower or tube)
 - Gaseous chemicals: upflow (tower or tube)
- High Consistency (20% 40%)
 - Downflow
- Aspect Ratio
- Low consistency: 4 7
- Medium consistency: no gas 4 7

gas > 8

Future Trends in Bleaching

- Greater use of oxygen compounds
- Progressive system closure
- More efficient chemical use
 - carefully chosen kappa targets
 - improved chemical contacting/mixing
 - hexenuronic acid removal
 - new chemical additives